
NASA/TM--2000-209634

Remote Control and Data Acquisition:

A Case Study

Alfred J. DeGennaro

Cleveland State University, Cleveland, Ohio

R. Allen Wilkinson

Glenn Research Center, Cleveland, Ohio

February 2000

The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated to

the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key part

in helping NASA maintain this important role.

The NASA STI Program Office is operated by

Langley Research Center, the Lead Center for
NASA's scientific and technical information. The

NASA STI Program Office provides access to the

NASA STI Database, the largest collection of

aeronautical and space science STI in the world.
The Program Office is also NASA's institutional

mechanism for disseminating the results of its
research and development activities. These results

are published by NASA in the NASA STI Report
Series, which includes the following report types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results of

NASA programs and include extensive data
or theoretical analysis. Includes compilations

of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA's counterpart of peer-

reviewed formal professional papers but

has less stringent limitations on manuscript

length and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or

of specialized interest, e.g., quick release

reports, working papers, and bibliographies
that contain minimal annotation. Does not

contain extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,
often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific
and technical material pertinent to NASA's
mission.

Specialized services that complement the STI

Program Office's diverse offerings include
creating custom thesauri, building customized

data bases, organizing and publishing research
results.., even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home Page

at httpYlwww.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at (301) 621-0134

• Telephone the NASA Access Help Desk at
(301) 621-0390

Write to:

NASA Access Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076

NASA/TM--2000-209634

Remote Control and Data Acquisition:

A Case Study

Alfred J. DeGennaro

Cleveland State University, Cleveland, Ohio

R. Allen Wilkinson

Glenn Research Center, Cleveland, Ohio

National Aeronautics and

Space Administration

Glenn Research Center

February 2000

Acknowledgments

A special thanks to the following people without whose support this effort would not be possible:

Sarah DeGennaro, Kyung-Yang Min, Bob Kusner, and Ted Wright for their careful criticisms;

Dan Oldham for his most recent upgrade work; the Zeno space experiment team for the

original strip charting software; and Mike Bayda for the original help to convert
from LabView to the current suite.

Trade names or manufacturers' names are used in this report for

identification only. This usage does not constitute an official

endorsement, either expressed or implied, by the National

Aeronautics and Space Administration.

NASA Center for Aerospace Information
7121 Standard Drive

Hanover, MD 21076
Price Code: A03

Available from

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22100
Price Code: A03

Remote Control and Data Acquisition: A Case Study

Alfred J. DeGennaro

Cleveland State Uifiversity, Cleveland, OH

1:/. Allen Wilkinson

NASA Glenn Research Center at Lewis Field, Cleveland, OH

Abstract

This paper details software tools developed to remotely command experimental apparatus, and to
acquire and visualize the associated data in soft real time. The work was undertaken because commercial
products failed to meet the needs. This work has identified six key factors intrinsic to development of
quality research laboratory software. Capabilities include access to all new instrument functions without
any programming or dependence on others to write drivers or virtual instruments, simple flfll screen text-
based experiment configuration and control user interface, months of continuous experiment run-times,
order of 1% CPU load for condensed matter physics experiment described here, very little imposition
of software tool choices on remote users, and total remote control from anywhere in the world over the

Internet or from home on a 56 Kb modem as if the user is sitting in the laboratory. This work yielded a
set of simple robust tools that are highly reliable, resource conserving, extensible, and versatile, with a
uniform simple interface.

1 Introduction

A common task of the National Aeronautics and Space Administration's (NASA) micrograrity laboratories

is to develop and improve scientific instrumentation supporting peer-reviewed research that may occur in

either Earth- or space-based laboratories. Many of these instrument packages have been a combination of

specialized hardware and custom software. Driving needs for this instrumentation are (1) remote operations

capability (teleseience), (2) versatile configuration with minimal software modification, (3) reusability, and

(4) simplicity and familiarity of operations for scientists. Given such motivations, a moderately paced

and deliberate evolution of well-designed, tested, and extensible software will be the least expensive path

producing the most robust toolset.

1.1 Background

Telescience may be generally defined as the ability to provide geographically scattered researchers with

viewable data and a means by which to command instruments in a near real time capacity termed "soft

real time". NASA has been invoh'ed in developing telescience for decades [1]. Historically tests have been

conducted within the context of controlling satellites [2]. More recently micrograx'ity science shuttle missions
have expanded telescience for remote control of many common experiments concurrently [3].

The authors have had direct experience with four microgravity telescience-based missions in the early

1990's: the International Microgravity Laboratory (IML1 and IML2) and the United States Microgravity

Payload (USMP2 and USMP3). On these missions commanding was done by the ground support teams

with a finite set of manually controlled scripts sent via a dedicated network to a broadcast center and

subsequently transmitted to the scientific apparatus onboard the shuttle. Results were piped down from the

NASA/TM--2000-209634 1

shuttlethroughthededicatednetworkto thescientistteamsin thegroundoperationscenterwherethey
wereviewed,stored,andusedin analyses.Resultsfromtheanalysesallowedresearchersto makenumerous
decisionsonmodifyingthecourseoftheirexperiment.ThemissionswerehighlysuccessfulwithIML2being
heraldedastile thenlongestmannedtelesciencenfission[4].

A valuablewindfallfl'omthesemicrogravityrelatedspacemissionswasafreeware-baseddatavisualization
toolthat implementedthestripchartingoflivemissiondata.Thissoftwarehasbeenwellreceived,hasbeen
usedonseveralsuccessiveflights,andisstill beingusedtoday.It isthiskindoflow-costsoftwarereuseand
remotecapabilitythat areprimemotivatorsin thissoftwaredesignandprovideaworkingmodelforwhat
ispossible.

1.2 Current Experiment

Thepresentground-basedexperimentsemployphaseshiftinginterferometryin thestudyof thethermal
diffusivityofnear-criticalpurefluids.Figure1depictsthecurrentlabconfiguration.Thisfigureisabstracted
to representonlythoseconnectionsbetweendevicesrelevantto thisdiscussion.Thecomputercontrolling
theexperimentis a 200 MHz Pentium PC with 64 MB of memory, 3 GB of disk storage, a video frame

grabbing board (FG), an IEEE general purpose interface bus (GPIB) card, and a network interface card

(NIC). The GPIB card transfers commands to and gathers data fl'om two precision 10-channel multimeters,

and a 4-channel digital-to-analog (D-to-A) converter. The FG interacts with a free running charge coupled

device (CCD) video camera with a field of view of the test cell. Images are captured in batches of 16 at

intervals. The images are 540x480 8-bit greyscale pixels. The 16-bit D-to-A com'erter controls two very

stable DC power supplies that power the heaters located in the shells surrounding the test cell. Two more

channels of the D-to-A converter control the amplitude of the square wave voltage applied to the liquid
crystal phase retarder (LCC).

Resorl

CCD Camera

LCC _ _ Sanaple Cell

ControllingkLogglng Co) n _j]j_t _ _ LASER

Frame _iiiiii_._ D-to-A Convcrler --

_ i

ltimcter

_ _ Virtual ConrtectlonJ

University

: = Figure 1: Lab configuration

NASA/TM--2000-209634 2

The interferometry requires square wave amplitude control of the voltage applied to the LCC and a

5 frame per sec image capture rate to adequately measure the thermodynamic equilibration on interest.

The temperature cont.rol requires active feedback proportional-integral-differential (PID) controls on two

thermostat shells for 4-50 ILC t2MS stable temperature over 60-hr runtimes on the innermost shell. To

confirm or modify experiment progress, sample temperature along with 16 other variables and captured

images must be viewed during the 60-hr runs (typically over weekends). Therefore, full command and data

viewing is needed over the Internet via a low bandwidth modem. One nmst be able to log in and out without

an?" affect on the running processes.
In summary, there are two to four physical devices interacting with two to seven processes over days and

weeks of operation. An?" process can be terminated or started with an?" number of instances of an?" process

at any time. Some FG operations are time critical to the 10 ms level. The computer is not heavily loaded

by the processes. Remote access is identical to being in the lab at the computer even over a modem.
The remainder of this paper will describe tl_e authors' prior experience with software control of ex-

periments, motivations for choices with respect to robust data acquisition, specific software design and

implementation paradigm, successes of this approach, and conclusions from this work.

2 Previous Solutions and Lessons Learned

The suite of data acquisition tools developed are now in their third revision. The first version was generated

using Windows NT and LabView. However, the learning curve and maintenance requirements, as well as

vendor upgrade frequency, exceeded frustration thresholds. This original data acquisition suite required a

dedicated person committed to grooming and maintaining the system. Changes to the system, for example,

adding new instrument hardware or reconfiguring channel attributes, required a rewrite and recompile of the .
source code. Perhaps the greatest difficulty lay in the fact that one was largely incapable of remotely accessing

the system to either query the state of long duration experimental runs or to perform any commanding of
instruments.

2.1 Graphical User Interfaced and Windowing Environments

GUI development tools, which promise a shorter time to move code into production, failed to produce a

good fit to the scientists' expectations. Specifically, it was found that these environments were nonintuitive.

For example, GUYs hide the "how" of software execution from a researcher. That is contrary to the
research instinct. Note that when tool design fails "to provide good conceptual models" or "make things

visible", then humans ha_'e a difficult time in understanding how to use the tool and fail to discover all

possible functions that may exist [5].

"Technology offers the potential to make life easier and more enjoyable; each new technolog3"

provides increased benefits. At the same time, added complexities arise to increase our difficult?"

and frustration. The development of a technology tends to follow a U-shaped curve of complexity:

starting high; dropping to a low, comfortable level, then climbing again. New kinds of devices are

complex and difficult to use. As technicians become more competent and an industry matures,

devices become simpler, more reliable, and more powerful. But then, after the industry has

stabilized, newcomers figure out how to add increased power and capability, but always at the

expense of added complexity and sometimes decreased reliability." I5]

Experience has demonstrated that GUI programs grow much as flowcharts do. Flowcharts; however, failed

to be used effectively because they grew without bounds in all directions. GUI programs, too, ma,v spread

over a large number of pages and be several layers of instructions deep. Many times these programs are

nonplanar requiring control lines to cross each other over and over again. This tends to create a mesh which

is, at best, difficult to follow. It is reminiscent of"spaghetti code" [1.6], which was a result of programmers

abusing the unconditional branch statement within their programs. The result is that production grade

NASA/TM--2000-209634 3

GUIprogramswrittenin windowingenvironmentsareoftendifficultto modify,maintain,anddifficultto
demonstratereliable.

It is theauthors'viewthat thereis a lackof cleardesignprinciplesfor GUIprogramming.Without
cleardesignprinciplesonefindsoneselfin a situationmuchaswithearlyprogrammingattempts,that is,
programmersarepushedintoamindsetof"code and fix" [6]. This model fails to be effective as it often

leads to poorly written code that is expensive to maintain. Worse still such coding paradigms lead to code

that is ahnost impossible to demonstrate as correct and hence unreliable [6 t. If circuit design methods could

help to control some of the design issues then it would be a great merging of what has traditionally been two

disparate groups. Unfortunately_ too few progrmnmers have the experience with circuit design techniques to

adequately design within a GUI programming environment. While significant strides are being made [1,7]
these have yet to become widely adopted.

In summary: the authors found that the unneeded complexity of the GUI interface and underlying code

should be avoided. This made software development quicker with higher performing code while keeping the
user interface simple and more predictable.

2.2 Commercial Off-The-Shelf (COTS) Software

Commercial data acquisition, plotting, and image viewing and processing packages under Windows-XX or

MAC-OS suffer fi'om being proprietary with some excessive licensing schemes. As such. details of critical

algorithms are kept out of the reach of researchers. When this proprietary black box approach becomes a

strategy for defining a market niche, it severely hampers the ability of the researcher to understand the data

being presented by the software. Unexpected results are common in pioneering science. When a researcher

sees unexpected results, then all elements of the data collection are re-examined. Any hidden elements block

the research progress. Commercial software with its hidden functions block research.

Software that supports instrumentation is rarely sufficient in its present state. Constant improvement is

sought. To do this researchers need the ability to change current software functions, but onl," in areas of

their choosing. It is tedious to be caught in the vendor loop of constant upgrades and compatibility issues
for functional upgrades of no interest.

Commercial software support for sharing scientific results via teleconference has been limited. Commercial

software usually has bloated proprietary data formats that slow data transmission and require the same

software by everyone. Historically: only UNIX systems have allowed reasonably secure live data sharing over

the Internet. Recent open-source UNIX systems have enabled easy low-cost data exchange. Readily available
source code and algorithms, efficient software, graphical functions as needed, data formats that all can read

and view, and mature tools motivated by function and not marketing, illustrate some of the richness that

this environment provides. Open-source software gives the researcher much that commercial software does
not.

2.3 Operating System Choices

Real time issues are crucial to good experiment control, h_t, as obvious as this is, most GUI environments do

not allow users to have coinplete control over critical timing issues [1]. Screen updates, mouse motions, and

disk updates can interfere with the user application. The workaround is to set the data acquisitio]_ machine
aside so as to be usabl--e only by the experiment. However, this solution is extreme for man)- purposes. Much

work is being conducted in this area with the result that many of the most popular operating s)'stems (OSs)
are recently providing a form of soft real time environment [8 13]. As expected, some OSs accomplish this

functionality more readily than others. In particular, UNIX environments I14] offer a strong solution as

they (1) allow priority setting by users, (2) provide robust, reliable, secure Internet remote access, and (3)

support "mature" multitasking [9,10,12:15-17]. Others do not offer these nearly as well or completely. They

are forever making half steps towards such features at the expense of users.

NASAfrM--2000-209634 4

2.4 Custom Software

Customsoftwarecanbe costly, often nonintuitive, frequently characterized as a dedicated solution, and

often not reusable without being deliberately targeted for that at inception. If clone poorly it is difficult to

modify and maintain, and often ties a researcher to a particular programming group. Solutions done "in

house" frequently lack the more sophisticated GUI interfaces but benefit fl'om being nearer the problem and

having tile uhimate consumer of the product near at hand to guide development. While solutions "contracted

out" may sport the more elegant user interface but require much more energy to keep the communication

channels open between developer and researcher to ensure satisfaction is achieved. The authors' preference

is to develop solutions in house so as to ha_,e a much stronger understanding of the processes and their

implementation. Cost is kept low by the simplicity of code and the utilization of mature software tools

already developed.
Historically, the approach most often taken has been to determine what flmctions are required froln tile

available devices, learn how to connnunicate with those devices, learn the syntax of the commands unique to

each device, sort through tile myriad options and possible pernmtations of command syntax, pick a handflfl

of useful instructions and associated parameters, embed them in the software and release it into production.

This "typical" approach suffers from a number of difficulties not the least of which is the tight coupling of
instrument commands within the source. The result is that if new functions are required, a reworking of the

program source is also required. Frequently this is seen as too difficult. What is more likely to be done is that
some parameters for the preselected instructions are allowed to be dynamically set but the full instrument

capability is usually lost.
GUI software and real time operating systems are still maturing. Currently, no one offering is universally

better than any other. Software that is expected to be more than a "quick and dirty" solution will be custom

designed incorporating tools that have a history of reliable performance. ___t custom software will provide
the best fit to the scientists' needs only if carefully managed through to completion. As researchers' expecta-

tions of software mature software specifications will become more forthright. Developers need a disciplined

approach that provides a solid design paradigm, involves the researcher throughout the development process,

and also is sensitive to the researchers' perceptions of function, utility, and learning styles.

3 Critical Factors Driving Software Specifications

As a direct consequence of this history, six key factors governing software design and programming method-

ology have been identified. The first factor focuses on software design and implementation requiring that

the software be sufficient to accomplish the tasks required, easy to modify, and easy to maintain. Moreover,

the software must be fully open to the user at any level. The method for adding extensions to the software

must be clear, repeatable, and stable. There must also be provision made for error recovery and critical

system failures, that is, there needs to exist a high degree of''fault tolerance." A second factor focuses on
reliability and performance of the software requiring that it can run for indeterminant times with any

frequency of user interaction. It also requires responsive and robust multitasking. Third, command and

control requires that users must be able to initiate, terminate, and alter the beharior of processes and

devices "on the fly". The interface must be familiar to the researcher, using natural metaphors. Fourth,

the visualization system must provide sufficient and clear information so as to allow its users to ascertain

its state at a glance. This is related partly to data visualization and partly to conmmnd status behavior.

Fifth, the system must be operable remotely by ninny users "simultaneously" without conflict or unnec-

essary delay. This facility should not require excessive comnmnications resources and should accommodate

users with relatively low bandwidth connections. Finally, sixth, the system must log data that is usable

on diverse computing platforms remotely or locally and within a variety of third party analysis software

without rework. The following sections address these factors in more detail.

NASAfrM--2000-209634 5

3.1 Software Design and Implementation

Thedesignersneedto thinkof creating tools that will have a useflll life expectancy in excess of 10 ?'ears

before major changes are required. Design must be done with a foreknowledge that systems developed will

be required to (1) be extensible by multiple developers, (2) be readily adaptable to new instruments and
technologies as they become needed, (3) have a stable user interface, and (4) interact with devices and

functions in repeatable ways to avoid user re-learning curves. Since multiple programmers will be involved

in maintaining and enhancing this software suite, documentation must be done concurrent with program

development. It is widely accepted that good design for usable systems is best done in conjunction with such

writing [18]. In addition, authoring of source code should make use of existing programming paradigms that

stress decomposition of complex problems into simpler modules, prototyping, walkthroughs, and encourage

frequent user invoh,ement [6]. The outcome will be to produce code that is readily comprehensible and

reliable, and to improve the likelihood of catching errors earl)- in the software development lifecycle.
Specifically, this factor requires that the software be designed such that the addition of new instruments

does not require a rewrite of existing, working software. Time to incorporate new instruments into experi-

ments nmst be minimized. To achieve these goals one must disentangle the instrument's command language
from being "hard coded" into the controlling software. To allow facility for additional (possibly unknown)

instruments a small scripting language with instrument configuration capability must be designed into the
solution. This scripting nmst be readily comprehensible by users. It nmst be sufficiently open-ended to allow

for an arbitrary number of variable length commands to be stored and ultimately issued to the corresponding
devices. In this instance it implies allowing for the reconfiguration of instruments even while the software is

running.

3.2 Reliability and Performance

In the current configuration the system runs for weeks and months at a time with 3-day interferometry

sequences mingled in. Data log files must be protected from computer hardware failure. Event timing must

be deterministic once the controlling software receives a command. Process prioritization must allow the

key processes to supersede most operating system processes (e.g., mouse movement). Process CPU cycles

should be very small so that running experiments may be controlled and data viewed with perhaps 10 to

20 percent CPU load even on tow-end machines (e.g., 80486 processors). Multiple processes will start, stop,

and execute at any time therefore they must neither interfere with nor overrun each other. One should be

able to run multiple experiments or other tasks on the computer without system failures or loss of execution

determinism in the experiment. The system must not allow temperature or an'," other critical process to "run

away." The system must be capable of automatically shutting down under such conditions. This is especially
true if this system is to be used on shuttle or Space Station missions.

The system will be implemented in stages with testing being performed at nmltiple levels. The program-

mers will be responsible for programming defensively, incorporating fl'equent incremental checks, employing

"test coverage", etc. [19]. The researchers will test the functionality and system performance. Finally, if the

software moves on to Space Station science use it will undergo numerous simulations and bounds checking.

3.3 Command and Control

This software suite should separate processes running concurrently in a multitasking environment, each

controlling its own device [20]. Processes will need to communicate with each other as well as be interfaced
with the user. Users anticipate the need to be able to change the setup profiles of instruments while the

experiment is running and to do so without restarting the experiment. Similarly runtime scripts that control

instrument execution may be changed by the user at any time. This enables starting a new experiment fl'om

an already running experiment.

The command interface must be simple and intuitive [21,22]. Instruments should be able to be started

and terminated remotely. They should survive logoff of any terminal session. In fact any process should be

able to be started or terminated without adversely impacting an?" other running process. The interface may

NASMTM--2000-209634 6

bereplicatedby nnlltipleusersin variouslocationsandshouldreflecttile currentstatusto all userslogged
in simultaneously.

3.4 Data Visualization and Experiment Status

Data values are usually viewed as a function of time and sometimes as a function of each other. Strip

charts do this well. hnages are the biggest consumer of computer resources and nmst not be biased by any

processing for storage (e.g., lossy versus lossless). In all cases live data graphics are preferred over tables and

blinking numbers. This work to (late has not had to handle animated surfaces or live video. There is nothing

ill this software that prohibits that future capability. Another requirement is portability of data files between

OSs and applications. A particular strength of portable data log files is that one is not linfited in choices

of display software. Stripchart display tools should be allowed or enabled either on the remote terminal
or on the lab host based on user choice. Process command and control interfaces should be constrained to

flfll-window text-based tools to improve communication performance and enable simplicity with extensibility
for remote and local users alike.

3.5 Remote Operations Capability

This work has invoh,ed multinational users. It is a goal to provide members of any research team fl'om around

the world the ability to access and interact with what is done in the lab. Furthermore, it is intended that

these systems be designed as a means for potential education outreach. Systems such as these could become

a mechanism by which school systems find ways to im,oh,e students in research projects using equipment

and facilities that they could not afford to own themseh,es. Ultimately this software could be used to control

experiments on either the Shuttle or Space Station.
With such a diverse group of users, it is clear that the command and viewing tools need to be simple

and familiar. The bandwidth needed for interaction should be manageable with a modem. Data should be

portable in an open format. Specifically, design will be implemented around existing communications media.

The choice here is an Ethernet and the TCP/IP protocols between remote terminals and in-lab host control

computers. This is a familiar tec]molog3" with much work being done to improve throughput and enhance

reliable data transfer. The intent is to leverage such foundational tools throughout the design.

3.6 Data Logging and Data Formats

There are two types of data recorded here, images and measured transducers over time. To store this data

in the most portable and efficient format, raw pixel format and text files are used respectively. File sizes

are on the order of 10 MB for text logs and 0.25 MB per image for pictures. Efficient data transmission is

left to the user's default hardware and software. For example, a home PC with a 56 Kb modem logged on

to tile lab host using secure shell (ssh) permits commanding and stripcharting with adequate performance.
Proprietary encrypted formats are avoided because of nonuniversal software tools needed to access the data

and the excess size of such formats.

4 Natural Data Acquisition With Remote Operations

The problem was divided into four parts: (1) to establish clearly defined communication areas in shared

memory for each device that nmst be managed, (2) to run each device as a separate concurrent process,

(3) to provide a means to monitor and control devices independently and remotely, and (4) to provide
data visualization tools to monitor progress of the experiment locally or remotely. The model, illustrated

in Figure 2, consists of three sections identified from left to right as 'initialization", "shared memory" to
support interprocess communication (IPC), and '"concurrently running processes".

The first tool named :_EXPeriment" (EXP) is used to create and load the communication areas into a

shared memory space. Instrument commands are read from setup scripts stored in an initialization file (see

NASA/TM--2000-209634 7

INITIALIZING EXPERIMENT PROCESSES RUNNING

RUNTIME ENVIRONMENT SHARED MEMORY CONCURRENTLY

EXPeriment

A
i
!
t
i
i
i

t
|

Matte Stom_)

LEGEND

4 Disk ACCESS

Memory Access

.......... Process Conl2rol

Semaphore

i CONTROLBLOC K" ":_r]l

I .. i i
i [] DEVICE 1.- Multimeler 1 i _ G',_[TE COLANDER

i _ ...

• i.. _ I DEVice
! ; DEV, CE3.'D-go-A C get i 1[[RUNtimc

i []...................i....................'E ;'
'/ 7i O ! _ Te,M_Pcrature

:::::::::::::::::::::::::
I DATA m.ocK I /_" ,'

! i_ ... 3

i DEVICE 3.'D-to-A C_onverter i i

,' L_J ... _ il i M.,, st.,,_

! _ DATA FRAMI_

i Q) 1 VISUALIZATION GRABBER

Figure 2: Software Model. Tile suite is identified by EXP and DEVRUN. G'NITE is the command interface.

TEMPCNTRL, Frame Grabber, etc. are examples of the extensibility of this software suite•

Appendix for a sample .ini file) and written to the shared memory segments located in the CONTROL
BLOCK (see Fig. 2) one set per device, for example, multimeterl. The user needs to learn the few command

strings that make up the scripts, and the command strings that are unique to each instrument. Researchers
want to know such command strings if an instrument has routine utility and quality computer-based mea-

surements are needed. The scripts are text files based upon a simple definition syntax, which allows users

to specify instrument initialization, process control, and instrument termination command sequences unique
to each device. As denoted in the figure this is the onl.v process of the suite that is allowed to write into the

CONTROL BLOCK region of shared memory. The EXPeriment module also attaches what are essentially
virtual instrunlents to physical instruments by registering GPIB addresses as assigned by the user. This

program need only be run once at computer power up. However, it can be re-run at any other time to

reconfigure an5" of the instruments, even while an experiment is running.

After the shared memory is established and instructions "uploaded" the DEVice RUNtime (DEVRUN)

packages are started; one for each instrument. These programs read from. the shared memory CONTROL

BLOCK to set up and command their corresponding devices. A state diagram of the DEVRUN program
is detailed in Figure 3. Multiple instances of DEVRUN may be run each in one of two modes. The first

and simplest mode is described in the leftmost portion of the figure and depicts a typical session. Observe

that once a process is begun it. will drop into an infinite loop (signified by the dotted arrow) until either

commanded by the monitoring process to quit or a PANIC instruction is received. The loop is executed

on a user specified time interval and follows the sequence; command device, read data, (optionally) filter

data, open logfiles, log data, close logfiles, and SLEEP until signaled to repeat loop. Data logs (see Fig. 5)
are generated by each instance of DEVRUN with the relevant column headers defined for each device in its

respective CONTROL BLOCK. Opening and closing logfiles with each DEVRUN loop is a way to preserve

data upon computer or power failure. Periodically, new logfiles are started at the user's request without the

need to restart any processes that make up the experiment.

NASA/TM--2000-209634 8

Assuggestedabove,theDEVRUNnlodulesmayalsobemodifiedtodosomeprocessingondatathathas
beenacquired.Thisfeatureisprovidedthrougha collectionoffilters, one for each DEVRUN, made active

through command line arguments used at execntion time. The filters are written in "C'" and compiled into
the DEVRUN modules themselves.

/

' I--I

I

"t

DEVice RUNtime
Process

[Eenvironment

space

! register de'dee 1

I and Process ID Jt

get de-dee script

inldalize dcdcc

TeMPerature CoNTRoL
Process

ellrlronmenl

ipaee

- .. t................. !

' I k': Ilcquire conlro] Of I
I DATA BLOCK "

I 1! the command line grab dmta from !

DATA BLOCK It i

DATA BLOCK [PC

<-°'I-1"DATA BLOCK I :

_os_data to] _ ', i'
DATA BLOCK I

issue commands I :
release I

DATA BLOCK I I

-- DEVRL.'N - I

SIGNAL _ :

SLEEP
I
: I

FEEDBA CK LOOP

[l==]1
Figure 3: State Diagram detailing the DEVice RUNtime process. Also depicted is an optional feedback

loop featuring an InterProcess-Communication (IPC) interface between two concurrently running processes;
DEVRUN and TEMPCNTRL.

As an alternative, DEV1RUN may be run in a second "POSTING" mode. This mode allows DEVRUN
to be used in conjunction with other concurrent processes, for example, temperature control. In this way

feedback loop control is provided. When invoked in this fashion the standard sequence of events is expanded

(see Fig. 3) so that the DEVRUN process will write or "post" its results to both the logfiles and to another
portion of shm'ed memory referred to as the DATA BLOCK, Providing controlled access to this sensitive

data area is crucial. To ensure data integrity and avoid DATA BLOCK overruns, semaphores have been

employed [231. Processes nmst first query the condition of the appropriate semaphore before using the related
DATA BLOCK segment of shared memory. After posting its data, DEVRUN will relinquish control of the

DATA BLOCK, signal its peer process and then sleep until the next cycle. The corresponding process will

then attempt to acquire the DATA BLOCK, grab the data, release the data segment, process the data,

command any devices as necessary, and then wait until it is signaled that new data is posted at which point

the cycle begins anew. It. is in this way that additional complex processing may be implemented.

NASA/TM--2000-209634 9

TheTEMPeratureCoNTRoLmodulesareanexcellentexampleof howthissystemmaybeextended
to incorporateadditionaluserfunctionality.InterProcess-Comnmnication(IPC)isaccomplishedviasignal
interruptsandsharedmemoryasdescribedabove.Oncedataisposted1)3,DEVRUN,ausermodulemay
dowhateverit requireswithoutdirectlyimpactingthedataacquisitionsuite.In thiswork,thesuitewas
extendedto doPIDtemperaturecontrolontwothermostatshellseachwithits owninstanceofTEMPCN-
TRL.

Otherexamplesof extendingthesystemaretheFGmodulethatmanagestheimagecaptureandLCC.

Likewise, an oscilloscope device has been added. The oscilloscope is implemented as a DEVRUN instance,

while the FG is a modification of vendor supplied DOS source code to run in the LINUX environment. The

FG process sleeps until it is triggered manually or by a timer. Upon receiving the trigger command the

program steps through a series of voltages capturing rapid images of the test cell. The FG process then

returns to sleep completing the cycle.

For stripchart data visualization, previously developed open-source space experiment software has been

used (see Fig. 5). The software was developed with mature Athena widget and X-window tools. Image data

are 540 x 480 8-bit grey scale pixels, stored in a raw pixel format, and accessible by a number of visualization

and analysis tools such as hnageMagick, PV-X\:-kVE, IDL, or MatLab. Image viewing tools may be chosen

to suit user preference.

Remote operation is via simple telnet or secure shell logins. All processes can be started, interrogated,

commanded, or ternfinated during a login session. Logoff can occur with no impact on running processes.

Data visualization requires X-Windows software on the remote terminal. X-Windows for visualization was

chosen because of its availability on all OSs, open standard based, and maturity. This suite is low bandwidth

such that a 56 Kbps modem handles all but strip charts and images instantly. Secure Shell's compression

scheme enables graphics refi'esh on the order of 10-15 seconds. Remote interaction is therefore fully functional

as if sitting at the laboratory computer.

4.1 Interprocess Communications (IPC)

An important feature to note in this design is that memory areas are partitioned to force a type of data

integrity (see Fig. 4). Only the EXP process is allowed to write into the CONTROL BLOCK region of shared

memory. The DEVRUN processes may only read from the CONTROL BLOCK. When communication with

user defined processes (e.g., TEMPerature CoNTRoL) is implemented through what is in essence a xhrtual

bulletin board (i.e., the DATA BLOCK), adhering to the use of semaphores for posting and acquiring data

helps to assure that other processes will be well behaved in this common data region. The DEVRUN processes
themselves treat data in the DATA BLOCK as untrustworthy and hence log only the data acquired directly
from the devices controlled. Processes that use the data from the DATA BLOCK nmst do their own data

validation. If other processes somehow corrupt this region it will not affect the data acquisition suite's

reliability. It is the responsibility of the developers making additions to the suite to prevent violating this

read/write rule and avoid potentially disastrous consequences.

4.2 The Command Interface

G'NITE Commander (see Fig. 5) is the name given to the device command user interface. It was developed

using the ncurses library which allows for complete text-based screen management in a UNIX environmeut.

The interface itself is rather spartan with the screen divided into several parts: (1) display, (2) command line,

and (3) function key descriptions. Context sensitive help on control command syntax is also provided. The

display allows one to view the various states of running processes or menmry as requested by the user. Users

may select to view process states, write new device commands directly into the CONTROL BLOCK, view

or alter the DATA BLOCK for parameters like set-points, or terminate processes directly. This is the only

tool that may actively alter any of the shared memory space and should therefore be used with prudence.

This interface requires a user to realize the shared memory blocks concept and know the command strings

or parameters each device understands. The rest is self-explanatory.

NASA/TM--2000-209634 10

EXPcrimcm

Process
CONTROL BLOCK

Legend

READ FROM

WIII'FE TO

DEVice RUNtime
DATA BLOCK

Process

TiMPcrature

CoNTRoL

Process

Process 2

Figure 4: Data integrity forced by direction of writes and reads.

5 Measures of Success

The current system has been in place for two years successfully controlling the interferometry experiment.
The system is remotely controlled via a text-based user interface that allows command of all aspects of the

experiment environment. The system has run continuously for extended periods of time (usually several

months) without either restarting the suite or rebooting the computer. The CPU usage is less than 1_ for

all but strip chart, graphics updates, which peak at 3.3_c, for the interferometry experiment. One can there-

fore run multiple experiments on one computer and GPIB interface such as running several interferometer

experiments and acquiring data from an oscilloscope or laser power met.er interactively.

Additions to the suite have been made since its original development. These enhancements have been

done seamlessly and independently of the core suite. Instruments have also been added without necessitating

a rewrite of the code. Instruments may be installed at runtime or added later while the experiment is running

without adversely impacting the runtime environment.

Using an Open Source platform has allowed researchers to incorporate additional features into the envi-

ronment without modifying existing tools. For example, the use of Secure Shell improves security without

debilitating the suite in any way. Quite the opposite, with the compression features such tools offer re-

searchers improved remote performance.

Designing the system as loosely coupled modules with weak cohesion, invoh'ing users in design i,ssues,

and purposing to create code that is maintainable has generated a system that is simple, robust, and efficient
and was done so in a remarkably short period of development time. The entire system (see Table 1) was

developed over a 10-week period. Eight nonfatal errors were found and were addressed in subsequent patches.

The system has been tested rigorously and continues to be used as a daily research tool.

6 Conclusions

One of the key features of this approach is t.he ability to separate commands unique to each instrument from

being embedded into the source code. This markedly reduces the time it takes to bring instruments into the
context of the experimental environment as users need not focus on coding issues but only on how to set

up and command their instrument(s). Separation of tasks means that the system is more reliable overall.

NASAfI'M--2000-209634 11

Module
Name

EXPeriment
DEViceRUNtime
TEMPerature
TIROL

CoN-

G'NITECommander
ManualTrigger

.\umberof
Lines of Code
(LOC_
492

443

363

693

Number of Number of Number of

Blank Lines Comment Lines Comments

54 66 69

53 194

5O

41

7O

23

19

147

73

13

2141

Filter A 27 19 21 22

TOTAL 2059 224 393 345

Table 1: Program development metrics for the Data Acquisition Suite and the G'NITE Commander

Allowing for independent processes to be run concurrentl.v and providing communication via IPC hooks (i.e.,

interrupts and the DATA BLOCK) implies that new programs may be added without rewriting the existing

systems. So long as the directed method for reading and writing shared memories is not violated one may

have confidence that processes will run reliably. Restricting data logs to generic open formats grants a wider
range of tools from which to select, for live visualization and post processing of data. Having written these

applications in ANSI C may shorten the time required to port them to other platforms, especially other

UNIX's. Serendipitous advances in open source UNIX's will serve to make this solution more attractive to
users.

This work confirms the belief that the six critical factors of scientific software: (1) careful systematic

design and implementation, (2) reliable performance, (3) minimal control mechanisms, (4) simple data

visualization, (5) remote capability, and (6) portable data formats, are achievable with modest resources

and will produce high-performance, high-quality software tools that will find a value beyond their immediate

use. This suite provides a natural: t.ransferable medium through which to conduct experiments. This effort

has not sought to exhaust all of the possible tool types that one may value in conducting research. More

importantly this work in no way impedes such growth but rather provides a solid bedrock of tools from

which to do further development. It is puzzling that this approach, which stresses simplicity, clarity, and

extensibility of laboratory software, seems to be foreign to software developers and downright alien to vendors
as a whole.

References

[1] J. R. Matey. A world without barriers: Editor's report fl'om NIWEEK "97. Computers in Physzcs,
11:570ff., NovjDec 1997.

[2] American Institute of Aeronautics and Astronautics. Telescience at the University of California, Berke-
leg. 39th Congress of the International Astronautical Federation, October 1988. Space Sciences Labo-

ratory, University of California, Berkeley, CA 94720.

[3] IR. Schuiling. Telescience is put to the test. Spaceflight, 35:68ff.. 1993.

[4] Roelof Schuiling. Longest flight of the space shuttle program: International Microgravity Laboratory-2

demonstrates telescience. Spaceflight, 1994.

NASA/TM--2000-209634 12

[5] D. A. Norman. The psychopathology of everyday things. Ill W. A. S. Buxton R. hi. Baecker, J. Grudin

and S. Greenberg, editors, Readings in Human-Computer b_teraction: Toward the]'_ar 2000, page 5ft.

Morgan Kaufmann Publishers, Inc, San Francisco, California, 2nd edition, 1995.

[6] B. W. Boehm. A spiral model of software development and enhancement. In et al. R. M. Baecker,

edit or_ Readings in Human-Computer Interactio_u Toward the Year 2000, page 281ff. Morgan Kaufmann

Publishers, Inc, San Francisco, California, 2nd edition, 1995.

[7] T. Williams. It takes more than a keen nose to track down software bugs. Computer Design, 32:67ff.-,
September 1993.

[8] R. Grehan. NT in real time. Byte, 21:86NA3-, 1996.

[9] Moses Joseph. Realtime POSIX: Boon or bunk? Computer Design, 33:156ff.-, September 1994.

[10] D. Hildebrand. POSIX for realtime embedded systems. Computer Design, 34:136-, 1995.

[11] J. Challenger. Visual programming for realtime. Computer Design, 33:120-, August 1994.

[12] M. Barabanov and V. Yodaiken. Ileal-time UNIX. enlail:yodaiken_nmt.edu.

[13] w. Oehme and S. Brosky. High times for realtime computers. Machine Design, 65:44ff.+, .March 1993.

[14] T. Williams. WindowsNT challenges ['NIX for embedded and realtime development. Computer Design,
33:47ff.+, 1994.

[15] T. Williams. Tools help preserve propriatary reahime system software investment. Computer Design,
32:36-, August 1993.

[16] T. Williams. Libra frees embedded pro_ams from priority scheduling. Computer Design, 34:36ff., 1995.

[17] J. Park and Y. Yoon. An extended TCP/IP protocol for real-time local area networks, enlail:jhyun,
t reeman:_rcshinha.ae.kr, 1997.

[18] John D. Gould and Clayton Lewis. Designing for usability: Key principles and what designers think.

Communications of the ACM, 28(3):300 31i, March 1985:

[19] Brian W. Kernighan and Rob Pike. The Practice of Programming. Addison-Wesley, Reading, Mass.,
1999.

[20] M. Burke et. al. E787 data acquisition software architecture. IEEE Transactions on Nuclear Science,

41(1):131 134, February 1994.

[21] Brad A. Myers. State of the art in user interface software tools. In W. A. S. Buxton R. M. Baecker,
J. Grudin and S. Greenberg, editors, Readings in Human-Computer Interaction:Toward the I/ear 2000,

pages 323-343..Morgan Kaufmann Publishers, Inc., San Francisco, CA, 2nd edition, 1995.

[22] A. Marcus. Principles of effective visual communication for graphical user interface design. In W. A.

S. Buxton 1R. M. Baecker, J. Grudin and S. Greenberg, editors, Readings in Human-Computer I_terac-

tion: Toward the Year 2000, page 425ff. Morgan Kaufmann Publishers, Inc, San Francisco, California,
2nd edition, 1995.

[23] W. Richard Stevens. UNIX Network Programming, volume 2. Prentice Hall, PTR, 2nd edition, 1999.

NASAfI'M--2000-209634 13

8 Appendices

This section provides snapshots of files and images presented in the reading.

Q,.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16. 8TITLE "Tent Air(C)"

17. 9TITLE "SCU\VatI(C)"

18. 8TITLE "Flange(C)"

19. _TITLE "Pres(mbar)"

20. _TITLE "Dummy"

21. 9TITLE "AHmd(g/m3)"

Algorithm INSTRUMENT.LVI
l. ###########################

_SAMPLE SETUP FILE FOR EXPERIMENTAL DAQ AND TEMPERATURE CONTROL (PID)

##########################. #

_iDEV COUNT

1 :number of devices connected to the NI488 &" setups to follow

5DEVICE

SNAME "meterl "

SLOG "meterl.log"

8NI_'MCHANNELS 6 !specify the no. of NON-comment channels to later define

8FORMAT "rc" ! rEAD_cHAN'

9TIMER(10s0) ! (SECONDSsMILLISECONDS)

$PRIORITY(-20)

! cht

! ch2

! ch3

! ch4

! oh5

! ch6

22.

23.

24.

25.

26.

27.

28.

29.

30.

31,

32.

33.

34,

35.

36,

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

:vSTtTLE "c7" ! ch7

_$TITLE "c8" ! ch8

_$TITLE "c9" ! ch9

#$TITLE "c10" ! chl0

_qTITLE "SetPtI(C)" !title for COMMent field 1

_$TITLE "comment 2" ! 2

#$TITLE "comment 3" ! 3

9COMMENT " SetPoint" i 1

#$COMMENT " ** " ! 2

#$COMMENT " ** " ! 3

8SETUP

IBCLEAR

'q-_RST"

":FORM:ELEM READ, CHAN" !specify 'reading,channel" output

":INIT:CONT OFF" !'ON' or 'OFF' to control triggering reads

":ABOR" !abort current going acquisition

":SYST:AZER:TYPE NORM" !AUTOZERO MODE "NORM' or 'SYNC'

":SYST:AZER:STAT OFF" !NORM is faster than SYNC

":SYST:LSYN:STAT ON" !Line Synchroniza*ion of Measurements, less noise

_:":SENS:VOLT:DC:RANG:AUTO ON" !

":SENS:VOLT:DC:RANG:UPP 5.0" !*USER MUST DECIDE RANGE VALUE

_":SENS:RES:RANG:AUTO ON" ! see the adjustable fixed ranges below

_***All of the following commands may change on the fly****

49. ":SENS:RES:NPLC 2"

50. ":SENS:RES:OCOM OFF"

51.

52.

53.

5,t.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

!*rain 0,01 to max 10, (2->7.5 DIGITS)

!*ON or OFF (ON for =<, 200k I

the following ranges correspond to fldl scale 2k, 20k, 200k, 2M ohm

":_ENS:RES:RANG:UPP 1000000"

":SENS:RES:AVER:TCON REP"

":SENS:RES:AVER:COUN 14"

":SENS:RES:AVER:STATE ON"

#":SENS:RES:RANG:UPP?"

#_SLEEP(1)

,__IBREAD

":SENS:VOLT:DC:NPLC 2"

!*set Ul)per range 1000,i0000,100000,1000000

!*REP or MOV

!*integer 1 to 100

[

! diagnostics

!* min 0.01 to max 10

":gENS:VOLT:DC:AVER:TCON REP" !* REP or MO\"

":SENS:VOLT:DC:._VER:COUN 8" !* integer I to 100

":SENS:VOLT:DC:AVER:STATE OFF" !

":SENS:VOLT:AC:NPLC 10" !* rain 0.01 to max 10

":gENS:VOLT:AC:AVER:TCON REP" !* REP or MOV

NASA/TM--2000-209634 14

70.

71,

72.

73.

74,

75.

76.

77.

7"8.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93,

94.

95,

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

100.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

":SENS:VOLT:AC:AVER:COUN 8" !* integer 1 to 100

":SENS:VOLT:AC:AVER:STATE OFF" !

":ROI:T:SCAN:LSEL NONE" !disable all scanning operations, clean up

":INIT:CONT OFF"

":ABOR" !* if there is an acquisition going, stop it

":ROUT:SCAN:INT:FUNC (_.I:10), "NONE'" !fit an.',' channels configed, clear them

channel 1

":ROUT:SCAN:INT:FI.'NC (_1), 'VOLT:DC'" !*

channel 2

":ROUT:SCAN:INT:FUNC (_2), "RES'" !*

channel 3

":ROUT:SCAN:INT:FUNC (_3), 'RES'" I*

":ROUT:SCAN:LSEL INT" ! Select the Above Configured Channels

4_ Set up triggering protocols

":ARM:LAYI:COI_'N 1" I* No. of passes thru Layer

":ARM:LAYI:SOUB IMM" !* trigger immediately when commanded

":ARM:LAY2:COUN 1" !*

":ARM:LAY2:SOUR IMM"]*

,_Dynamic and dependent on _: channels active

":TRIG:COUNT 5" ! No. of channels to scan

":TRIG:SOUR IMM" ! trigger immediately when commanded

#Trace scan channels and provide.:sense all readings in engineering format

":TRAC:CLEAR" !

":TRAC:EGR FULL" !

":TRAC:POIN 5" ! No. of channels to scan (buffer _ize)

":TRAC:FEED SENSE" !*

":ABORT" !

":TRAC:FEED:CONT NEXT" I* rearms multimeter

":INIT:IMM" [* start multimeter to sample

SLEEP(8) !allow time for multimeter to accept and act on cmds

SEND

i ***********************************

SRUNTIME

":SYST:AZER:STAT ON" I take a little dead time to reset zero on D.MM

":TRAC:DATA?" [send data from buffer to computer

IBREAD !

_ABOR" I

":SYST:AZER:STAT OFF"

":TRAC:FEED:CONT NEXT" ! rearms multimeter

":INIT:IMM" ! triggers multimeter again

:_ go off and do pid after this statement and log to file here

SEND

_D END

_EOF !end of setup file

NASA/TM--2000-209634 15

Figure5: Screenshotoftypicalexperimentruntimecommand and control.

NASAlTM--2000-209634 16

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

PubTic reporting burden for this collection of information is estimated to average ! hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and ma;ntaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington HeadquarIers Services, Directorate for information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Projec_ (0704-018B), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank') 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

February 2000 Technical Memorandum

'5. FUNDING NUMBERS4. TITLE AND SUBTITLE

Remote Control and Data Acquisition: A Case Study

6. AUTHOR(S)

Alfred J. DeGennaro and R. Allen Wilkinson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

John H. Glenn Research Center at Lewis Field

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

WU- 101-53-00-00

8. PERFORMING ORGANIZATION

REPORT NUMBER

E-11963

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM--2000-209634

11. SUPPLEMENTARY NOTES

Alfred J. DeGennaro, Cleveland State University, Cleveland, Ohio 44115, and R. Allen Wilkinson, NASA Glenn Re-

search Center. Responsible person, R. Allen Wilkinson, organization code 6712, (216) 433-2075.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category: 61 Distribution: Nonstandard

This publication is available from the NASA Center for AeroSpace Information, (301) 621-0390.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This paper details software tools developed to remotely command experimental apparatus, and to acquire and visualize

the associated data in soft real time. The work was undertaken because commercial products failed to meet the needs.

This work has identified six key factors intrinsic to development of quality research laboratory software. Capabilities

include access to all new instrument functions without any programming or dependence on others to write drivers or

virtual instruments, simple full screen text-based experiment configuration and control user interface, months of

continuous experiment run-times, order of 1% CPU load for condensed matter physics experiment described here, very

little imposition of software tool choices on remote users, and total remote control from anywhere in the world over the

Internet or from home on a 56 Kb modem as if the user is sitting in the laboratory. This work yielded a set of simple

robust tools that are highly reliable, resource conserving, extensible, and versatile, with a uniform simple interface.

14. SUBJECT TERMS

Virtual instruments; Realtime; Data acquisition; LINUX; Telescience; Remote control;

Data visualization

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

27,
16. PRICE CODE

A03
20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSi Std. Z39-1B

291]- 102

